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CHAPTER VI

LONG-TERM METEORITE HAZARDS TO BURIED NUCLEAR WASTE
Report 2° a

W. K. Hartmann

PTlanetary Sciences Institute

SUMMARY

The main purpose of this study is to put into analytic form information
on the frequency of meteorite impact events Targe enough to affect buried
nuclear wastes. Part 1 presents new data on the relation between crater size
and total impact energy, with equation (1) expressing the relation. Part 2
derives equation (6), which gives the rate of accumulation of area covered by
craters larger than diameter D. A graphical relation between D and the depth
of disturbance (Figure VI-2) is given. This section concludes that the
probability of a single site 600 m deep being disturbed in a million years is
of the order 2.5 x 10'6. Part 4 points out that meteorite impacts are also
sources of seismic disturbance and should be factored into the seismic model
for the hazard study. Equation (8) gives a methodology for including meteor-
ite impacts in the seismic model. Part 5 and equation (9) give a methodology
for dealing with repositories with extended surface area. Part 6 gives

examples of applications.

RELATION BETWEEN CRATER SIZE AND TOTAL ENERGY

Figure VI-1 shows the relationship between crater size and energy of an
incoming meteorite. New information on this subject has come from several
sources. In September 1976, a major symposium on "Planetary Cratering
Mechanics" was held in Flagstaff, and the results were published in 1978
(Roddy et al., 1978). Several papers, especially Croft (1978) and Vortman
(1978) discuss the energy needed to produce a terrestrial crater of certain
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size. A review of the material indicates that‘there,is a significant spread
in estimated total kinetic energy required to produce an impact crater of
certain size, partly because most empirical data on large craters come from
exp]osions of different types rather than impacts.

The solid line in Figure VI-1 shows the curves derived in previous work,
based on Baldwin (1963), and the x's in Figure VI-1 show the recent estimates
of total energy expended to make craters of several sizes, based on Croft
(1978). The average of Croft's and Baldwin's figures tend to be a factor of
about 2 or 3 less than the results of Baldwin.

A purpose of this report is to but relevant meteorite data into a simple
analytical form for use in a computer model for release scenario analysis. An
adequate fit to the new data (as well as the old data) in Figure VI-1 is given

by:

log D = 0.288 log KE - 6.637 : (1)
where
D = crater diameter (km)
KE = total kinetic energy of meteorite at impact (ergs)

Check: Using the diameter of Meteor Crater, Arizona, 1.04 km, the equation
yields log KE = 23.1. This figure is in the range of energy currently esti-
mated for that event, as summarized by Croft (1978).

DERIVATION OF ANALYTIC TREATMENT OF CRATERING HAZARD

Both terrestrial and lunar craters have been used to derive crater pro-
duction rates. The lunar craters are easier to use because they offer more
complete statistics, being well-preserved in the 3.5 x 109 year old lava
flows of the moon. Studies indicate that the lunar and terrestrial rates are
within a facfor 2 of each other, an uncertainty comparable to or less than the
uncertainty in the terrestrial rate. In previous work, therefore, a rough
mean rate for the Tast 3.5 x 10g years was used, derived by dividing crater
density on average lunar lava flows (craters/kmz) by the average age of the
flows (in years) to get craters formed/ka/yr.
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This fit is accurate within an estimated 40% or better for craters larger than
D =2 km. Below this size, it is probably accurate for primary meteorite
impact craters (those formed by meteorite impact) but neglects the secondary
impact craters (formed by debris thrown out of primaries) that begin to be
more numerous at sizes below about 2 km on the moon. For this study the curve
for primaries will be used, because (1) secondaries on earth may be less
numerous because of atmospheric drag effects, and (2) secondaries are of less
significance at diameters above 500 m (which are of concern in this study)

than at smaller sizes.

In the hazard evaluation program, a parameter that seems more useful than
the total number of craters formed per km [/yr is the total area A covered by
craters per km /yr because the total area covered by craters determ1nes the
fractional amount of ground excavated to below a given depth. A factor that
is important in determing the total area covered by craters is crater diame-
ter. The total area covered by craters per kmz/yr can be evaluated as
follows. The incremental diameter frequency function is (by differentiating

Equation 3):
- -1.80 ¢ 0728 4p

Therefore the area in each increment is:

dA = w (D/2)° dN = F D® o
. L8OIC 0.8
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TABLE VI-1. Results from Equation (6) and Comparison with Data
From Previous Work

| Log A Value .

Excavation Fracture Crater from Years Required to Cover 60%
Depth (d) Depth Diam. Previous of Area with Craters of
(m) {df) (m) (D) (km) Log A Work _ Diameter D (= 1/A)

10 20 05 -11.5  -9.4(3) 3 (1)
33 132 19 -11.6 -11.5 , 4 (11)
100 400 .64  -11.6 -11.5 4 (11)
333 1332 2.5 -11.7 -11.6 5 (11)
1,000 4,000 9.2 -11.8  -12.1 6 (11)
3,333 13,332 38.7. -12.0  -12.4(b) 1 (12)
10,000 40,000 128 213.0  -12.4(b) 1 (13)

(a) This value is considerably higher than that in the new calculation,
because it takes into account the abundant secondaries, whereas the
present calculation neglects them. They appear so shallow that they are
not a serious part of the total hazard.

(b) These values are somewhat higher than the older values because of a
difference in the diameter distribution of craters assumed in the two
studies. The new distribution, based on a least squares fit to crater
count data, appears more accurate. The risk is so small from these rare,
large-D craters that the difference appears unimportant. Agreement at
other diameters is quite good.



The time required to cover any given fraction of the U.S. (or any other
area) with craters larger than D can be easily computed. The inverse of A,
i.e., 1/A, gives the timescale needed to cover a large fraction (some 60%)
with craters. For example, A for 2.5 km craters, which excavate to 100 m and
fracture to 400 m, is found to be 2.06 x 10’12/year. One would have to wait
1/A = 5 x 1011 years to accumulate enough area to cover most of the ground.
To get a 1% chance of penetration or fractur1ng to the depths indicated, one
would have to wait 5 x 109 years. Other probab111t1es can be similarly
scaled.

Because the repository studied in the July 1977 Battelle workshop is
considered to be 600 m deep with a proposed lifetime of 1 million years, it is
possible to estimate from equation (6) or Table VI-1 that the probability of
penetration in 106 years is about 10 /4 X 1011, or 2.5 x 10 6, and the
time to increase the probability of penetration by fractures to near 100%
would be roughly 4 x 1011 years. |

NOTE ON CONSTANCY OF CRATERING RATE

Analyses of cratering, both by empirical Apollo evidence and celestial
mechanical theory of asteroid orbits, indicates that the cratering rate in the
current 108 year period is nearly constant and may be declining slightly on
the long term as interplanetary debris are swept up. Although there is always
a chance of some new debris being injected into our part of the solar system
by perturbation of material in other regions, it appears unlikely that a
strong surge of meteoritic cratering could seriously affect the hazard to
nuclear wastes in the next 106 years.

METEORITE IMPACTS AS SEISMIC ENERGY SOURCES - ANALYTIC TREATMENT

An impacting meteorite carries a certain amount of initial kinetic energy.
In addition to being dissipated by crushing and accelerating rock to make the
crater, this energy is partly dissipated in the form of seismic waves.
Therefore, it appears appropriate to treat the meteorites not only as an
excavation hazard, but as a source of seismic disturbances randomly
distributed in time and space.
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This equation gives the seismic energy dissipated during formation of a crater
of size D. The frequency N (events/kmz/yr) is given by equation (5) as:

log N = -1.80 log D - 12.74 _
= -1.80 (0.288 log SE - 6.115) - 12.74
= -0.518 log SE - 1.73
= log {no. seismic events/kmz/yr) _
where
. SE = energy of seismic source in ergs. (8)

This formulation should permit meteorite impacts to be treated in the release
scenario analysis as a form of earthquake with the random frequency specified
by equation (8). It will admittedly be small but might be significant in
geological areas that are otherwise thought to be very stable and seismically
quiet.

EXTENDED VS. "POINT" REPOSITORIES

Equation (6), giving the rate at which areas are excavated to depth d(D)
or fractured to depth df(D), was formulated to allow evaluation of meteorite
hazards in the case where a repository has a surface dimension <<D. In this
case, such as a repository in the form of a shaft a few meters wide, the
repository was viewed as a point and the question was asked, simply, how long
will it take until one of the sufficiently large craters overlaps that

"point?"

In the June 1978 workshop at Battelle, several participants referred to
an extended repository area, perhaps encompassing over 10 km2 or more. The
entire area would need to be kept free from disturbance. A breach or dis-
turbance is assumed to occur if any part of this area is penetrated to the
critical burial depth (usually taken as 600 m).

In this case a new methodology is needed. Equation (6) is no longer
useful, but equation (5) permits easy evaluation of the hazard. One simply
selects the crater diameter D viewed as constituting a threat. For example,
from Figure VI-2, D must be = 6 km in order to excavate to 600 m, and D must
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FIGURE VI-3. Sketch of Repository Surface Area (solid lines) Showing Damage

Extending into Repository from an Impact Crater Lying in a
Zone Just Outside Repository (dashed line). Critical area is
thus given by width of repository plus a zone of D/2 on each
side. Impact anywhere in this larger zone, a$ evaluated in
text, causes damage in repository if crater diameter is larger
than the D value specified.




From Figure VI-2, D = 1 km for df = 600 m

From Figure VI-3, the critical area is (V10 +_1)2 = 17 km2

From Equation 9,

No. craters = N,AT = 1.82 (10713y (1) 17 (10%)

3 x 10'6

= probability.
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